perlintern - autogenerated documentation of purely internal                  Perl functions


This file is the autogenerated documentation of functions in the Perl interpreter that are documented using Perl’s internal documentation format but are not marked as part of the Perl API. In other words, they are not for use in extensions!

CV reference counts and CvOUTSIDE

CvWEAKOUTSIDE Each CV has a pointer,
, to its lexically enclosing CV (if any). Because pointers to anonymous sub prototypes are stored in
pad slots, it is a possible to get a circular reference, with the parent pointing to the child and vice-versa. To avoid the ensuing memory leak, we do not increment the reference count of the CV pointed to by
in the one specific instance that the parent has a
pad slot pointing back to us. In this case, we set the
flag in the child. This allows us to determine under what circumstances we should decrement the refcount of the parent when freeing the child.

There is a further complication with non-closure anonymous subs (i.e. those that do not refer to any lexicals outside that sub). In this case, the anonymous prototype is shared rather than being cloned. This has the consequence that the parent may be freed while there are still active children, eg

    BEGIN { $a = sub { eval $x } }

In this case, the BEGIN is freed immediately after execution since there are no active references to it: the anon sub prototype has

set since it’s not a closure, and
points to the same CV, so it doesn’t contribute to BEGIN’s refcount either. When
is executed, the
eval $x
causes the chain of
s to be followed, and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any

entries in the pad are explicitly removed from the pad, and if the refcount of the pointed-to anon sub is still positive, then that child’s
is set to point to its grandparent. This will only occur in the single specific case of a non-closure anon prototype having one or more active references (such as

One other thing to consider is that a CV may be merely undefined rather than freed, eg

undef &foo
. In this case, its refcount may not have reached zero, but we still delete its pad and its
etc. Since various children may still have their
pointing at this undefined CV, we keep its own
for the time being, so that the chain of lexical scopes is unbroken. For example, the following should print 123:

    my $x = 123;
    sub tmp { sub { eval $x } }
    my $a = tmp();
    undef &tmp;
    print  $a->();

        bool    CvWEAKOUTSIDE(CV *cv)

Functions in file pad.h

CX_CURPAD_SAVE Save the current pad in the given context block structure.

        void    CX_CURPAD_SAVE(struct context)
CX_CURPAD_SV Access the SV at offset po in the saved current pad in the given context block structure (can be used as an lvalue).

        SV *    CX_CURPAD_SV(struct context, PADOFFSET po)
PAD_BASE_SV Get the value from slot
in the base (DEPTH=1) pad of a padlist

        SV *    PAD_BASE_SV(PADLIST padlist, PADOFFSET po)
PAD_CLONE_VARS |CLONE_PARAMS* param Clone the state variables associated with running and compiling pads.

        void    PAD_CLONE_VARS(PerlInterpreter *proto_perl \)
PAD_COMPNAME_FLAGS Return the flags for the current compiling pad name at offset
. Assumes a valid slot entry.

PAD_COMPNAME_GEN The generation number of the name at offset
in the current compiling pad (lvalue). Note that
is hijacked for this purpose.

PAD_COMPNAME_GEN_set Sets the generation number of the name at offset
in the current ling pad (lvalue) to
. Note that
is hijacked for this purpose.

        STRLEN  PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)
PAD_COMPNAME_OURSTASH Return the stash associated with an
variable. Assumes the slot entry is a valid

PAD_COMPNAME_PV Return the name of the current compiling pad name at offset
. Assumes a valid slot entry.

        char *  PAD_COMPNAME_PV(PADOFFSET po)
PAD_COMPNAME_TYPE Return the type (stash) of the current compiling pad name at offset
. Must be a valid name. Returns null if not typed.

PAD_DUP Clone a padlist.

        void    PAD_DUP(PADLIST dstpad, PADLIST srcpad, CLONE_PARAMS* param)
PAD_RESTORE_LOCAL Restore the old pad saved into the local variable opad by PAD_SAVE_LOCAL()

        void    PAD_RESTORE_LOCAL(PAD *opad)
PAD_SAVE_LOCAL Save the current pad to the local variable opad, then make the current pad equal to npad

        void    PAD_SAVE_LOCAL(PAD *opad, PAD *npad)
PAD_SAVE_SETNULLPAD Save the current pad then set it to null.

        void    PAD_SAVE_SETNULLPAD()
PAD_SETSV Set the slot at offset
in the current pad to

        SV *    PAD_SETSV(PADOFFSET po, SV* sv)
PAD_SET_CUR Set the current pad to be pad
in the padlist, saving the previous current pad. NB currently this macro expands to a string too long for some compilers, so it’s best to replace it with


        void    PAD_SET_CUR(PADLIST padlist, I32 n)
PAD_SET_CUR_NOSAVE like PAD_SET_CUR, but without the save

        void    PAD_SET_CUR_NOSAVE(PADLIST padlist, I32 n)
PAD_SV Get the value at offset
in the current pad

        void    PAD_SV(PADOFFSET po)
PAD_SVl Lightweight and lvalue version of
. Get or set the value at offset
in the current pad. Unlike
, does not print diagnostics with -DX. For internal use only.

        SV *    PAD_SVl(PADOFFSET po)
SAVECLEARSV Clear the pointed to pad value on scope exit. (i.e. the runtime action of ’my’)

        void    SAVECLEARSV(SV **svp)
SAVECOMPPAD save PL_comppad and PL_curpad

        void    SAVECOMPPAD()
SAVEPADSV Save a pad slot (used to restore after an iteration)

XXX DAPM it would make more sense to make the arg a PADOFFSET         void    SAVEPADSV(PADOFFSET po)

GV Functions

is_gv_magical Returns
if given the name of a magical GV.

Currently only useful internally when determining if a GV should be created even in rvalue contexts.

is not used at present but available for future extension to allow selecting particular classes of magical variable.

Currently assumes that

is NUL terminated (as well as len being valid). This assumption is met by all callers within the perl core, which all pass pointers returned by SvPV.

        bool    is_gv_magical(const char *name, STRLEN len, U32 flags)
is_gv_magical_sv Returns
if given the name of a magical GV. Calls is_gv_magical.

        bool    is_gv_magical_sv(SV *name, U32 flags)

Hash Manipulation Functions

refcounted_he_chain_2hv Generates and returns a
HV *
by walking up the tree starting at the passed in
struct refcounted_he *

        HV *    refcounted_he_chain_2hv(const struct refcounted_he *c)
refcounted_he_free Decrements the reference count of the passed in
struct refcounted_he *
by one. If the reference count reaches zero the structure’s memory is freed, and
iterates onto the parent node.

        void    refcounted_he_free(struct refcounted_he *he)
refcounted_he_new Creates a new
struct refcounted_he
. As key is copied, and value is stored in a compact form, all references remain the property of the caller. The
struct refcounted_he
is returned with a reference count of 1.

        struct refcounted_he *  refcounted_he_new(struct refcounted_he *const parent, SV *const key, SV *const value)

IO Functions

start_glob Function called by
to spawn a glob (or do the glob inside perl on VMS). This code used to be inline, but now perl uses
this glob starter is only used by miniperl during the build process. Moving it away shrinks pp_hot.c; shrinking pp_hot.c helps speed perl up.

        PerlIO* start_glob(SV* pattern, IO *io)

Magical Functions

magic_sethint Triggered by a delete from %^H, records the key to

        int     magic_sethint(SV* sv, MAGIC* mg)
mg_localize Copy some of the magic from an existing SV to new localized version of that SV. Container magic (eg
, tie) gets copied, value magic doesn’t (eg taint, pos).

        void    mg_localize(SV* sv, SV* nsv)

MRO Functions

mro_get_linear_isa_c3 Returns the C3 linearization of
the given stash. The return value is a read-only AV*.
should be 0 (it is used internally in this function’s recursion).

You are responsible for

on the return value if you plan to store it anywhere semi-permanently (otherwise it might be deleted out from under you the next time the cache is invalidated).

        AV*     mro_get_linear_isa_c3(HV* stash, I32 level)
mro_get_linear_isa_dfs Returns the Depth-First Search linearization of
the given stash. The return value is a read-only AV*.
should be 0 (it is used internally in this function’s recursion).

You are responsible for

on the return value if you plan to store it anywhere semi-permanently (otherwise it might be deleted out from under you the next time the cache is invalidated).

        AV*     mro_get_linear_isa_dfs(HV* stash, I32 level)
mro_isa_changed_in Takes the necessary steps (cache invalidations, mostly) when the
of the given package has changed. Invoked by the
magic, should not need to invoke directly.

        void    mro_isa_changed_in(HV* stash)

Pad Data Structures

CvPADLIST CV’s can have CvPADLIST(cv) set to point to an AV.

For these purposes forms are a kind-of CV, eval"s are too (except they’re not callable at will and are always thrown away after the eval" is done executing). Require’d files are simply evals without any outer lexical scope.

XSUBs don’t have CvPADLIST set - dXSTARG fetches values from PL_curpad, but that is really the callers pad (a slot of which is allocated by every entersub).

The CvPADLIST AV has does not have AvREAL set, so REFCNT of component items is managed manual (mostly in pad.c) rather than normal av.c rules. The items in the AV are not SVs as for a normal AV, but other AVs:

0’th Entry of the CvPADLIST is an AV which represents the names or rather the static type information for lexicals.

The CvDEPTH’th entry of CvPADLIST AV is an AV which is the stack frame at that depth of recursion into the CV. The 0’th slot of a frame AV is an AV which is

. other entries are storage for variables and op targets.

During compilation:

is set to the names AV.
is set to the frame AV for the frame CvDEPTH == 1.
is set to the body of the frame AV (i.e. AvARRAY(PL_comppad)).

During execution,

refer to the live frame of the currently executing sub.

Iterating over the names AV iterates over all possible pad items. Pad slots that are SVs_PADTMP (targets/GVs/constants) end up having &PL_sv_undef names (see pad_alloc()).

Only my/our variable (SVs_PADMY/SVs_PADOUR) slots get valid names. The rest are op targets/GVs/constants which are statically allocated or resolved at compile time. These don’t have names by which they can be looked up from Perl code at run time through eval" like my/our variables can be. Since they can’t be looked up by name" but only by their index allocated at compile time (which is usually in PL_op->op_targ), wasting a name SV for them doesn’t make sense.

The SVs in the names AV have their PV being the name of the variable. xlow+1..xhigh inclusive in the NV union is a range of cop_seq numbers for which the name is valid. For typed lexicals name SV is SVt_PVMG and SvSTASH points at the type. For

lexicals, the type is also SVt_PVMG, with the SvOURSTASH slot pointing at the stash of the associated global (so that duplicate
declarations in the same package can be detected). SvUVX is sometimes hijacked to store the generation number during compilation.

If SvFAKE is set on the name SV, then that slot in the frame AV is a REFCNT’ed reference to a lexical from outside. In this case, the name SV does not use xlow and xhigh to store a cop_seq range, since it is in scope throughout. Instead xhigh stores some flags containing info about the real lexical (is it declared in an anon, and is it capable of being instantiated multiple times?), and for fake ANONs, xlow contains the index within the parent’s pad where the lexical’s value is stored, to make cloning quicker.

If the ’name’ is ’&’ the corresponding entry in frame AV is a CV representing a possible closure. (SvFAKE and name of ’&’ is not a meaningful combination currently but could become so if

my sub foo {}
is implemented.)

Note that formats are treated as anon subs, and are cloned each time write is called (if necessary).

The flag SVf_PADSTALE is cleared on lexicals each time the my() is executed, and set on scope exit. This allows the ’Variable

is not available’ warning to be generated in evals, such as

    { my $x = 1; sub f { eval $x} } f();

        AV *    CvPADLIST(CV *cv)
cv_clone Clone a CV: make a new CV which points to the same code etc, but which has a newly-created pad built by copying the prototype pad and capturing any outer lexicals.

        CV*     cv_clone(CV* proto)
cv_dump dump the contents of a CV

        void    cv_dump(const CV *cv, const char *title)
do_dump_pad Dump the contents of a padlist

        void    do_dump_pad(I32 level, PerlIO *file, PADLIST *padlist, int full)
intro_my Introduce my variables to visible status.

        U32     intro_my()
pad_add_anon Add an anon code entry to the current compiling pad

        PADOFFSET       pad_add_anon(SV* sv, OPCODE op_type)
pad_add_name Create a new name and associated PADMY SV in the current pad; return the offset. If
is valid, the name is for a typed lexical; set the name’s stash to that value. If
is valid, it’s an our lexical, set the name’s SvOURSTASH to that value

If fake, it means we’re cloning an existing entry

        PADOFFSET       pad_add_name(const char *name, HV* typestash, HV* ourstash, bool clone, bool state)
pad_alloc Allocate a new my or tmp pad entry. For a my, simply push a null SV onto the end of PL_comppad, but for a tmp, scan the pad from PL_padix upwards for a slot which has no name and no active value.

        PADOFFSET       pad_alloc(I32 optype, U32 tmptype)
pad_block_start Update the pad compilation state variables on entry to a new block

        void    pad_block_start(int full)
pad_check_dup Check for duplicate declarations: report any of: * a my in the current scope with the same name; * an our (anywhere in the pad) with the same name and the same stash as
indicates that the name to check is an ’our’ declaration

        void    pad_check_dup(const char* name, bool is_our, const HV* ourstash)
pad_findlex Find a named lexical anywhere in a chain of nested pads. Add fake entries in the inner pads if it’s found in an outer one.

Returns the offset in the bottom pad of the lex or the fake lex. cv is the CV in which to start the search, and seq is the current cop_seq to match against. If warn is true, print appropriate warnings. The out_* vars return values, and so are pointers to where the returned values should be stored. out_capture, if non-null, requests that the innermost instance of the lexical is captured; out_name_sv is set to the innermost matched namesv or fake namesv; out_flags returns the flags normally associated with the IVX field of a fake namesv.

Note that pad_findlex() is recursive; it recurses up the chain of CVs, then comes back down, adding fake entries as it goes. It has to be this way because fake namesvs in anon protoypes have to store in xlow the index into the parent pad.

        PADOFFSET       pad_findlex(const char *name, const CV* cv, U32 seq, int warn, SV** out_capture, SV** out_name_sv, int *out_flags)
pad_findmy Given a lexical name, try to find its offset, first in the current pad, or failing that, in the pads of any lexically enclosing subs (including the complications introduced by eval). If the name is found in an outer pad, then a fake entry is added to the current pad. Returns the offset in the current pad, or NOT_IN_PAD on failure.

        PADOFFSET       pad_findmy(const char* name)
pad_fixup_inner_anons For any anon CVs in the pad, change CvOUTSIDE of that CV from old_cv to new_cv if necessary. Needed when a newly-compiled CV has to be moved to a pre-existing CV struct.

        void    pad_fixup_inner_anons(PADLIST *padlist, CV *old_cv, CV *new_cv)
pad_free Free the SV at offset po in the current pad.

        void    pad_free(PADOFFSET po)
pad_leavemy Cleanup at end of scope during compilation: set the max seq number for lexicals in this scope and warn of any lexicals that never got introduced.

        void    pad_leavemy()
pad_new Create a new compiling padlist, saving and updating the various global vars at the same time as creating the pad itself. The following flags can be OR’ed together:

    padnew_CLONE        this pad is for a cloned CV
    padnew_SAVE         save old globals
    padnew_SAVESUB      also save extra stuff for start of sub

        PADLIST*        pad_new(int flags)
pad_push Push a new pad frame onto the padlist, unless there’s already a pad at this depth, in which case don’t bother creating a new one. Then give the new pad an
in slot zero.

        void    pad_push(PADLIST *padlist, int depth)
pad_reset Mark all the current temporaries for reuse

        void    pad_reset()
pad_setsv Set the entry at offset po in the current pad to sv. Use the macro PAD_SETSV() rather than calling this function directly.

        void    pad_setsv(PADOFFSET po, SV* sv)
pad_swipe Abandon the tmp in the current pad at offset po and replace with a new one.

        void    pad_swipe(PADOFFSET po, bool refadjust)
pad_tidy Tidy up a pad after we’ve finished compiling it: * remove most stuff from the pads of anonsub prototypes; * give it a
; * mark tmps as such.

        void    pad_tidy(padtidy_type type)
pad_undef Free the padlist associated with a CV. If parts of it happen to be current, we null the relevant PL_*pad* global vars so that we don’t have any dangling references left. We also repoint the CvOUTSIDE of any about-to-be-orphaned inner subs to the outer of this cv.

(This function should really be called pad_free, but the name was already taken)

        void    pad_undef(CV* cv)

Per-Interpreter Variables

PL_DBsingle When Perl is run in debugging mode, with the -d switch, this SV is a boolean which indicates whether subs are being single-stepped. Single-stepping is automatically turned on after every step. This is the C variable which corresponds to Perl’s
variable. See

        SV *    PL_DBsingle
PL_DBsub When Perl is run in debugging mode, with the -d switch, this GV contains the SV which holds the name of the sub being debugged. This is the C variable which corresponds to Perl’s
variable. See

        GV *    PL_DBsub
PL_DBtrace Trace variable used when Perl is run in debugging mode, with the -d switch. This is the C variable which corresponds to Perl’s
variable. See

        SV *    PL_DBtrace
PL_dowarn The C variable which corresponds to Perl’s $^W warning variable.

        bool    PL_dowarn
PL_last_in_gv The GV which was last used for a filehandle input operation. (

        GV*     PL_last_in_gv
PL_ofs_sv The output field separator -
in Perl space.

        SV*     PL_ofs_sv
PL_rs The input record separator -
in Perl space.

        SV*     PL_rs

Stack Manipulation Macros

djSP Declare Just
. This is actually identical to
, and declares a local copy of perl’s stack pointer, available via the
macro. See
. (Available for backward source code compatibility with the old (Perl 5.005) thread model.)

LVRET True if this op will be the return value of an lvalue subroutine

SV Manipulation Functions

sv_add_arena Given a chunk of memory, link it to the head of the list of arenas, and split it into a list of free SVs.

        void    sv_add_arena(char* ptr, U32 size, U32 flags)
sv_clean_all Decrement the refcnt of each remaining SV, possibly triggering a cleanup. This function may have to be called multiple times to free SVs which are in complex self-referential hierarchies.

        I32     sv_clean_all()
sv_clean_objs Attempt to destroy all objects not yet freed

        void    sv_clean_objs()
sv_free_arenas Deallocate the memory used by all arenas. Note that all the individual SV heads and bodies within the arenas must already have been freed.

        void    sv_free_arenas()

SV-Body Allocation

sv_2num Return an SV with the numeric value of the source SV, doing any necessary reference or overload conversion. You must use the
macro to access this function.

        SV*     sv_2num(SV* sv)

Unicode Support

find_uninit_var Find the name of the undefined variable (if any) that caused the operator o to issue a Use of uninitialized value warning. If match is true, only return a name if it’s value matches uninit_sv. So roughly speaking, if a unary operator (such as OP_COS) generates a warning, then following the direct child of the op may yield an OP_PADSV or OP_GV that gives the name of the undefined variable. On the other hand, with OP_ADD there are two branches to follow, so we only print the variable name if we get an exact match.

The name is returned as a mortal SV.

Assumes that PL_op is the op that originally triggered the error, and that PL_comppad/PL_curpad points to the currently executing pad.

        SV*     find_uninit_var(OP* obase, SV* uninit_sv, bool top)
report_uninit Print appropriate Use of uninitialized variable warning

        void    report_uninit(SV* uninit_sv)


The autodocumentation system was originally added to the Perl core by Benjamin Stuhl. Documentation is by whoever was kind enough to document their functions.


perlguts(1), perlapi(1)

openSUSE Logo